Omega-3 and Sex Ratio of Lambs

Dr Edward Clayton
NSW Department of Primary Industries
Wagga Wagga Agricultural Institute

Dr John Wilkins, Mr Richard Meyer - NSW DPI
Ms Catherine Gulliver, Dr Michael Friend,
Dr Bindi King, Dr Susan Robertson - CSU
Omega-3 and Omega-6 Fatty Acids

• Fish oil - rich source of omega-3
• Health benefits in humans
 – cardiovascular disease (Simopoulos, 1999)
 – inflammatory diseases (Horrobin, 1999)
 – mental health disorders (Clayton et al., 2007)
• Health benefits in animals?
Omega-3 and Omega-6 in Plants

α-linolenic acid (ALA) - C18:3n-3 - Omega-3

Linoleic acid (LA) - C18:2n-6 - Omega-6
Sources of Omega-3 and Omega-6

Omega-3
- Pasture, vegetative cereals (including silage), forage legumes, linseed (flaxseed)
- \(\omega \)-linolenic acid (ALA) (C18:3n-3)
- Eicosapentaenoic acid (EPA) (C20:5n-3)

Omega-6
- Grains, soybean oil/meal, safflower, cottonseed meal, sunflower, olive oil
- Linoleic acid (LA) (C18:2n-6)
- Arachidonic acid (AA) (C20:4n-6)
Omega-3 in Animal Feed

<table>
<thead>
<tr>
<th>Forage</th>
<th>Type</th>
<th>Omega-3 (%)</th>
<th>Omega-6 (%)</th>
<th>n-6:n-3 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td>Improved</td>
<td>47.9</td>
<td>10.0</td>
<td>0.21</td>
</tr>
<tr>
<td>Pasture</td>
<td>Lucerne</td>
<td>46.6</td>
<td>14.7</td>
<td>0.32</td>
</tr>
<tr>
<td>Cereal</td>
<td>Oat/Pea</td>
<td>44.9</td>
<td>14.8</td>
<td>0.33</td>
</tr>
<tr>
<td>Pasture</td>
<td>Native/Improved</td>
<td>28.8</td>
<td>18.0</td>
<td>0.62</td>
</tr>
<tr>
<td>Silage</td>
<td>Ryegrass</td>
<td>49.1</td>
<td>3.59</td>
<td>0.31</td>
</tr>
<tr>
<td>Silage</td>
<td>Oats</td>
<td>37.1</td>
<td>13.3</td>
<td>0.36</td>
</tr>
<tr>
<td>Silage</td>
<td>Barley</td>
<td>31.4</td>
<td>12.8</td>
<td>0.41</td>
</tr>
<tr>
<td>Grain</td>
<td>Oats</td>
<td>1.1</td>
<td>33.7</td>
<td>31.5</td>
</tr>
<tr>
<td>Grain</td>
<td>Barley</td>
<td>4.3</td>
<td>47.6</td>
<td>11.0</td>
</tr>
<tr>
<td>Grain</td>
<td>Maize</td>
<td>11.0</td>
<td>52.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>CSM</td>
<td>0.3</td>
<td>42.7</td>
<td>164.3</td>
</tr>
</tbody>
</table>

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Metabolism to Prostaglandin

EPA - Omega-3

AA - Omega-6

- Removal of 2 double bonds

PGF_{3\alpha}

PGF_{2\alpha}

- Inflammation

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Experimental Work

• Series of studies examining omega-3 and omega-6 fatty acids in sheep
 – Potential inflammation - prostaglandin
 – Sex ratio of lambs
Treatment Diets

Omega-3
90% Silage - 10% Molasses

Omega-6
70% Oats - 8% CSM

Omega-6 : Omega-3
0.93 : 1

Omega-6 : Omega-3
13.0 : 1

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Study 1 - Prostaglandin Response

• Border Leicester x Merino ewes
 – Silage (n = 15)
 – Oats/CSM (n = 15)

• Oxytocin (10 IU) used to stimulate PG

• Plasma PG metabolite measured prior to oxytocin and for 60 min following oxytocin
Prostaglandin Response

Plasma PGE₂ Metabolite Concentration (Log₁₀ pg/mL)

- Oats/CSM (Omega-6)
- Silage (Omega-3)

Time Following Oxytocin Injection (min)

P = 0.002

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Why Change the Sex Ratio of Lambs?

• Terminal sire enterprises prefer males;
 – faster growth rate
 – increased muscle accumulation

• Self-replacing enterprises and stud breeders prefer females
Omega-3 and Sex Ratio

• Increased proportion of males;
 – North American possum - fish
 (Austad, 1986)
 – Mice - fat supplement
 (Fountain et al., 2008)
 – Sheep polyunsaturated fats??
 (Green et al., 2008)

Sources:
www.poctos.com/live/opossum-american-virginia
www.picturesforcoloring.com/mouse
Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Studies 2 to 6 - Sex Ratio

- 5 studies conducted between 2010 and 2012

X-Breds
- 2010 - n = 148 per diet
- 2011 - n = 152 per diet
- 2012 - n = 152 (diet crossover)

Merinos
- 2011 - n = 160 per diet
- 2012 - n = 160 (diet crossover)

- Diets fed for 6 weeks pre and 17 days post-joining or 6 weeks pre-joining only
Pen Design - 2010

<table>
<thead>
<tr>
<th>BLOCK/REP 1</th>
<th>BLOCK/REP 2</th>
<th>BLOCK/REP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen 1</td>
<td>Pen 2</td>
<td>Pen 3</td>
</tr>
<tr>
<td>Silage (Omega-3)</td>
<td>Oats/CSM (Omega-6)</td>
<td>Silage (Omega-3)</td>
</tr>
<tr>
<td>Pre + Post-conception</td>
<td>Pre + Post-conception</td>
<td>Pre + Post-conception</td>
</tr>
<tr>
<td>Pen 4</td>
<td>Pen 5</td>
<td>Pen 6</td>
</tr>
<tr>
<td>Oats/CSM (Omega-6)</td>
<td>Oats/CSM (Omega-6)</td>
<td>Silage (Omega-3)</td>
</tr>
<tr>
<td>Pre + Post-conception</td>
<td>Pre + Post-conception</td>
<td>Pre + Post-conception</td>
</tr>
</tbody>
</table>

Silage (Omega-3) - n = 148

Oats/CSM (Omega-6) - n = 148
Pen Design – 2011-12

<table>
<thead>
<tr>
<th>BLOCK/REP 1</th>
<th>BLOCK/REP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen 1</td>
<td>Pen 2</td>
</tr>
<tr>
<td>Oats/CSM (Omega-6)</td>
<td>Silage (Omega-3)</td>
</tr>
<tr>
<td>Pre-conception</td>
<td>Pre + Post-conception</td>
</tr>
</tbody>
</table>

Silage - Pre + Post-conception (Omega-3) - n = 76
Oats/CSM - Pre + Post-conception (Omega-6) - n = 76

Cross-over design in year 2

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Mating and Oestrous Detection

- Natural mating - 2 rams per pen
Blood Omega-3

![Graph showing the variation of Plasma Omega-3 ALA (% Total Fatty Acid) with Day of Feeding Experimental Diets. The graph compares Silage (Omega-3) and Oats/CSM (Omega-6).]

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Omega-3 in Feed and Blood

![Graph showing the relationship between concentration of C18:3n-3 in feed (g/kg DM) and plasma fatty acid concentration (pg/mL). Two data points are shown: Barley Silage and Ryegrass Silage.]
Time to Oestrus

![Graph showing mean time to oestrus for different groups with p-values for significance.]

Omega-3 and sex ratio of lambs - Dr Edward Clayton (Livestock Research Officer - Ruminant Nutrition)
Sex Ratio of Lambs

- **X-Breds**
 - Omega-3 Pre-Joining: 44.4%
 - Omega-3 Pre + Post-Joining: 43.4%
 - Omega-6 Pre-Joining: 54.1%
 - Omega-6 Pre + Post-Joining: 57.2%

- **Merinos**
 - Omega-3 Pre-Joining: 49.5%
 - Omega-6 Pre-Joining: 53.1%
 - Omega-3 Pre + Post-Joining: 43.9%
 - Omega-6 Pre + Post-Joining: 64.2%

Significance levels:
- Omega-3 vs Omega-6 Pre-Joining: p = 0.195
- Omega-3 vs Omega-6 Pre + Post-Joining: p = 0.018
- Omega-3 vs Omega-6 Pre-Joining: p = 0.573
- Omega-3 vs Omega-6 Pre + Post-Joining: p = 0.002
Sex Ratio Breed Differences

• Merinos
 – Larger effect when fed pre- and post-joining
• X-Breds
 – Larger effect in singles than twins
• Greatest effect in singles fed pre- and post joining (21% more females)
Omega-3 in Blood and Sex Ratio
Outcomes

- Ewes fed Oats/CSM (high in omega-6) had:
 - more omega-6/less omega-3 in plasma
 - increased PG response to oxytocin
 - shorter time to oestrus
 - approximately 10-15% more female lambs
Where to?

• Overall lamb survival and production
• Lamb metabolism
• Health attributes of meat
• More on-farm studies
On-farm Study

![Graph showing the mean time of joining for two treatment groups, pasture and oats, with a p-value of less than 0.001.]
Reproduction Outcomes

<table>
<thead>
<tr>
<th>Reproduction Measure</th>
<th>Omega-3 (Pasture)</th>
<th>Omega-6 (Oats)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of ewes pregnant (%)</td>
<td>89.4</td>
<td>87.5</td>
<td>0.479</td>
</tr>
<tr>
<td>Mean foetal number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For ewes pregnant</td>
<td>1.06 (± 0.02)</td>
<td>1.22 (± 0.03)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>For all ewes</td>
<td>0.95 (± 0.02)</td>
<td>1.06 (± 0.03)</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Practicalities – What do we think works?

Feed Oats at 500 g/hd/day
Feed daily to start then every second or third day

-4 -3 -2 -1 0 1 2 3 4 5 6
Week of Joining

Start feeding ewes oats
Feed some oats to rams
Put rams out with ewes
End of joining
In Summary

Omega-3
Silage
More Males

Omega-6
Oats/Cottonseed Meal
More Females

Grain for Girls?
Acknowledgements

- WWAI: Greg Clark, Steven Huckell, Michael Loiterton, Rex Edis, John Moore, Craig Lihou, Patricia O’ Keeffe
- John Piltz, Craig Rodham, Geoff Casburn, Peter Hawkins, Jamie Ayton, Greg Scott
- CSU: Brian Alston, Tony Hobbs, Brad Kelk, John Broster, Steph Knott
- Students: Alex Doulman, Simone Vincent, Bryanna Beattie, Vanessa Farrall, Emma Hand (CSU) Natalie Bignell (Sydney Uni)
- Paul Meggison (Ausfarm Nutrition)
- On-farm collaborators
- Meat and Livestock Australia